a2 United States Patent
Chen et al.

US009262335B2

(10) Patent No.: US 9,262,335 B2
(45) Date of Patent: Feb. 16, 2016

(54) RE-BUILDING MAPPING INFORMATION
FOR MEMORY DEVICES

(71) Applicant: MICRON TECHNOLOGY, INC.,
Boise, ID (US)

(72) Inventors: Frank Chen, North Potomac, MD (US);
Yuan Rong, Shanghai (CN); Zhao Wei,
Shanghai (CN)

(73) Assignee: Micron Technology, Inc., Boise, ID
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 92 days.

(21) Appl. No.: 14/274,146

(22) Filed: May 9, 2014

(65) Prior Publication Data
US 2014/0250273 Al Sep. 4, 2014

Related U.S. Application Data

(62) Division of application No. 12/268,879, filed on Now.
11, 2008, now Pat. No. 8,732,388.

(30) Foreign Application Priority Data
Sep. 16,2008 (CN) oveevevvncriennnnne 2008 1 0149661
(51) Imt.ClL
GO6F 12/00 (2006.01)
GO6F 12/10 (2006.01)
GO6F 12/02 (2006.01)
GO6F 12/12 (2006.01)
G11C 29/00 (2006.01)
(52) US.CL
CPC ... GOG6F 12/1009 (2013.01); GO6F 12/0246

(2013.01); GO6F 12/12 (2013.01); GO6F
2212/657 (2013.01); GO6F 2212/69 (2013.01);
GOGF 2212/7201 (2013.01); GO6F 2212/7207
(2013.01); G11C 29/76 (2013.01)

(58) Field of Classification Search
CPC ..ccoovvreriennn GOG6F 12/0246; GOGF 2212/7201,
GO6F 12/1009
USPC oo 711/103, 170, 203, 207
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

4,068,303 A * 1/1978 Morita GO6F 12/1036
711207
6,697,797 B1* 2/2004 Hoggatt GO6F 17/30067
6,973,558 B2* 12/2005 Hudson GO6F 12/0292
710/52

7,664,906 B2 2/2010 Chung et al.
8,261,133 B1* 9/2012 Ali-Santosa GO6F 11/1004
713/1

2003/0093610 Al 5/2003 Lai et al.

2004/0255092 Al* 12/2004 Nishikawa GO6F 12/0246
711/203

2005/0132125 Al 6/2005 Gan et al.
2007/0083697 Al 4/2007 Birrell et al.

2007/0192533 Al* 82007 Kim ..., GO6F 12/0246
711/103
2008/0098193 Al* 42008 Im ..o, GO6F 12/0246
711/170

2009/0271564 Al 10/2009 Sugimoto et al.

FOREIGN PATENT DOCUMENTS

EP 0977121 A2 2/2000
* cited by examiner

Primary Examiner — Mardochee Chery
(74) Attorney, Agent, or Firm — Dicke, Billig & Czaja,
PLLC

(57) ABSTRACT

Memory modules and methods of operating memory mod-
ules re-build mapping information from data read from last
valid physical pages. Corruption of mapping information is
detected. A last valid physical page associated with logical
datablocks is read. Mapping information is obtained from the
data read from the last valid physical page, and mapping
information is re-built using the mapping information
obtained from the last valid pages.

20 Claims, 7 Drawing Sheets

a memory device is corrupted

Detecting that mapping information of /— 660

662
Reading a last valid physical page /—
associated with each logical data
block of the memory device

Obtaining mapping information 664
from the data read from only the /—
last valid physical pages of the
logical data blocks

Re-building the memory device 666
mappling information from the /
mapping information obtained

from the last valid pages

US 9,262,335 B2

Sheet 1 of 7

Feb. 16, 2016

U.S. Patent

l 'OId

Mooy

[18

3

AYLINONED
TFOULNCD

N 3IN00W

L INGON

¥0¢
HITIOUINOD
HIALSYIN

1]

2oL

001

oEt
HOSSIO0OUd

j1r4)

US 9,262,335 B2

Sheet 2 of 7

Feb. 16, 2016

U.S. Patent

2402 —

(pi1en) 9 ebed [eoiboT

¢ 9Ol

°Log —

(pien) 1 abed [eoifo

(pleA) g ebed [eo1607

(p11eA) ¢ abed [eoIbOT

(pifen) 0 obed [eolboT

(p10) 0 8bed |eaibo

hLlog —

(p10) 0 ebed [eoifoT

%10z —

(p10) 0 ebed [eoiboT

—

)oo|g 607

av0¢c

(p1en) G ebed [eoibo

(pieA) £ ebed [eo1b0T

(p10) L abed [eoifon

~—— ‘02

(pI0) G abed |eoiboT

(plo) 9 ebed |eoifoT

~— %102

(plo) L obed [eoibon

(plo) G ebed [eoiboT]

(p10) g obed |ea1607

(p10) 1 obed [eaiboT

(pjo) v ebed |eoibo

(pien) ¢ ebed [eoifoT

(plo) g obed [ed1B0T

(pio) g abed [eolboT

(plo) 0 ebed [eoibo

(pl0) | ebed [eoifoT

~—— '10g

3ooig Bo

(p10) 0 ebed [eoiboT

~—°10¢

evr0c¢

%00|g ejled

/(AV

US 9,262,335 B2

Sheet 3 of 7

Feb. 16, 2016

U.S. Patent

a9l

beg adAL
ssal abed |eoisA
%00Ig 50019 pPPY d [edisAyd
“vZe 1\ T /
~ /
~ /
/// \\
S /
~ /
// /
~ /
~ N /
// /
£g abed | z9 obed g¢ abed | zg ebed | 1€ obey . g2 abey | | abeq | o ebed
Anug Aijug Anug Aiug Aug Anug Az Alug
7\

/ \\\ / \\\
\ 7 \ Ve
\ \\ \ \\
\ / \ re
\ vee .7 \ vee .7

d v
\ s \ Ve
\ \\ \ \\
\ / A Ve
\ d \
\ s \ Ve
\ s \ Vs
\ 4 \ \\
eleq rlRQ
BlRpED ele(] Jes Blepe)s ereq Jes
903 lepelsiN 1eq Jesn 303 1epelsiy req Jesn
ariLe Jcle l\ E9l¢E eyle k ezle
102

US 9,262,335 B2

Sheet 4 of 7

Feb. 16, 2016

U.S. Patent

9g¥

Lysy

2514

2514

42417

%1%

217

82512

SyGy

A A A A A A A I

V¥ 'Old

L0 02 L0g (=14
go ebed | | 29 ebeyd | obed 0 ebed
[edishud | | reorsAud leaisAud | | reaishud £-0 S|pUUEYD
N A A A A

g9 obed | | g9 obed | ebed 0 obed

leoisfud | | reaisAud leaishyd | | reaisAyd £ ISULEHD
g9 ofied | | 2o abedq | abeyd 0 ebed

[eosAyd | | [eoisAud [eoisAyd | | jeoisAuq 9 leuuByd
g9 obeyq | | g9 obedq | abey 0 abed

[eoisfud | | |eoIsAyd [eoisAud | | reaisAyd g |BuUBUD
g9 abed | | g9 abed | ebeyq 0 ebed

roisAud | | [eoishyd reoisAud | | reoishud v ISULELO
£9 ebed | | 29 abed | abeyg 0 abey

[eoisAud | | leaisAud [eaishyd | | reoishug € [suuByg
£9 ebed | | 29 ebedq | ebeyq 0 abey

ledrsAud | | jedisAud leoisAud | | rearsAug g IpuUBY)
£9 abed | | g9 obedq 1 abed 0 ebed

[edisAud | | fedishuqd leaisAud | | reaishugd L [puuEyD
£g abeq | | g9 ebey | 8bed 0 obed

leoisAud | | feoisAud leoisAyd | | reoisAud 0 [puuEyd

L0¢ 10C 102 ¥0¢ / ¢0¢

¥0¢ / ¢0¢

-~

> 0S¢

US 9,262,335 B2

Sheet S of 7

Feb. 16, 2016

U.S. Patent

©

w

<
hH

B2°1%

aesid

14

a2%i%

214

72514

14

74174

— =~ A AN AN A A A

ar oI

10g (1074 102 csy
Lzt obed | [9z| ebed | ebed 0 obey
[eo1sAyd [eoIsAyd reoishug [eoIsAU L-0 s|euueyn
1 / 4 N y
¥0¢ / €0¢
/2| obed | | g2} abed | ebed 0 sbed
[eoisAyd [eoisAud [eaisAug oAy / lauueyy
/2| obed | | 9z} obed | obed 0 ebed
1BaISAUd feoishyd [eoIsAud [eoisAyd 9 [puURYD
Lzg| obed | | 9z} obed . | obey 0 ebed
[eaisAyd [eoisAuyd [eoisAud [eaisAud § feuuEYd
/gl obed | | 9g| ebeq | ofed 0 efed
[eoIsAud [esisAud [eoisAud jeoisAud ¥ [puueyn
5 5 5 5 > 05t
/21 8bed | | 92| abey | obeg 0 ebeg
leoisAyd | | [eaisAud leoisAud | | reoisAud € IBuURyD
/gl abed | | 9z obeyq | ebed 0 efed
reaisAyg | | eoishugd leolsAud | | reoisAyd ¢ IBUUBUD
l21 obed | | 92| ebed | 8bed 0 abed
[eo1sAud [eaisAyd leaisAuq jeoisAug 1 [ouueyD
Lz} ebed [| 921 ebed | obed 0 ebeq
[ea1sAyd [esisAyd [eoIsAud [eoisAug 0 |euueyn)
102 Loz — 102 02 / 202

U.S. Patent

Feb. 16,2016 Sheet 6 of 7

US 9,262,335 B2

Receive user data from host for a
logical data block

Retrieve mapping information
corresponding to the addressed
logical data block

Generate metadata corresponding to
the mapping information of the
addressed logical data block

Combine the user data
and the metadata

Generate ECC data for the
combined user data and
metadata and combine

Write the combined data to a free
physical page for the logical data block

FIG. 5

U.S. Patent Feb. 16, 2016 Sheet 7 of 7 US 9,262,335 B2

Detecting that mapping information of 660
a memory device is corrupted /—

662
Reading a last valid physical page /
associated with each logical data
block of the memory device

Obtaining mapping information 664
from the data read from only the /
last valid physical pages of the
logical data blocks

Re-building the memory device 666
mapping information from the f
mapping information obtained

from the last valid pages

FIG. 6

US 9,262,335 B2

1
RE-BUILDING MAPPING INFORMATION
FOR MEMORY DEVICES

RELATED APPLICATIONS

This application is a Divisional of U.S. Ser. No. 12/268,879
filed on Nov. 11, 2008 (Pending), entitled “EMBEDDED
MAPPING INFORMATION FOR MEMORY DEVICES,”
which is commonly assigned and incorporated by reference
in its entirety herein. This application further claims priority
to Chinese Patent Application Serial No. 200810149661.5
filed Sep. 16, 2008, entitled “EMBEDDED MAPPING
INFORMATION FOR MEMORY DEVICES,” which is
commonly assigned.

TECHNICAL FIELD

The present disclosure relates generally to semiconductor
memory, and in particular, in one or more embodiments, the
present disclosure relates to methods and apparatus utilizing
embedded mapping information for memory devices.

BACKGROUND

Electronic devices commonly have some type of bulk stor-
age device available to them. A common example is a hard
disk drive (HDD). HDDs are capable of large amounts of
storage at relatively low cost, with current consumer HDDs
available with over one terabyte of capacity.

HDDs generally store data on rotating magnetic media or
platters. Data is typically stored as a pattern of magnetic flux
reversals on the platters. To write data to a typical HDD, the
platter is rotated at high speed while a write head floating
above the platter generates a series of magnetic pulses to align
magnetic particles on the platter to represent the data. To read
data from a typical HDD, resistance changes are induced in a
magnetoresistive read head as it floats above the platter
rotated at high speed. In practice, the resulting data signal is
an analog signal whose peaks and valleys are the result of the
magnetic flux reversals of the data pattern. Digital signal
processing techniques called partial response maximum like-
lihood (PRML) are then used to sample the analog data signal
to determine the likely data pattern responsible for generating
the data signal.

HDDs have certain drawbacks due to their mechanical
nature. HDDs are susceptible to damage or excessive read/
write errors due to shock, vibration or strong magnetic fields.
Inaddition, they are relatively large users of power in portable
electronic devices.

Another example of a bulk storage device is a solid state
drive (SSD). Instead of storing data on rotating media, SSDs
utilize semiconductor memory devices to store their data, but
often include an interface and form factor making them
appear to their host system as if they are a typical HDD. The
memory devices of SSDs are typically non-volatile flash
memory devices.

Flash memory devices have developed into a popular
source of non-volatile memory for a wide range of electronic
applications. Flash memory devices typically use a one-tran-
sistor memory cell that allows for high memory densities,
high reliability, and low power consumption. Changes in
threshold voltage of the cells, through programming of
charge storage nodes (e.g., floating gates or trapping layers)
or other physical phenomena (e.g., phase change or polariza-
tion), determine the data value of each cell. Common uses for
flash memory and other non-volatile memory include per-
sonal computers, personal digital assistants (PDAs), digital

10

15

20

25

30

35

40

45

50

55

60

65

2

cameras, digital media players, digital recorders, games,
appliances, vehicles, wireless devices, mobile telephones,
and removable memory modules, and the uses for non-vola-
tile memory continue to expand.

Unlike HDDs, the operation of SSDs is generally not sub-
jectto vibration, shock or magnetic field concerns due to their
solid state nature. Similarly, without moving parts, SSDs have
lower power requirements than HDDs. However, SSDs cur-
rently have much lower storage capacities compared to HDDs
of the same form factor and a significantly higher cost for
equivalent storage capacities.

Due to the nature of flash memory devices, the physical
location within a flash memory device for a given logical
address will generally change over time. To address this
changing correspondence, a Flash Translation Layer (FTL) is
used to map the logical address to the physical address to
which data has been stored. Although this high-level mapping
information is often held in volatile memory for ease of use
during operation of the memory device, such mapping infor-
mation is periodically stored to non-volatile memory so that it
may be retrieved during start-up of the device. Alternatively,
this mapping information may be updated to non-volatile
storage with each write operation. If an SSD is powered down
abruptly, such that the most recent mapping information has
not been stored to non-volatile memory, every valid page of
the memory devices forming the SSD is scanned to re-build
the relationship between logical addresses and current physi-
cal addresses. This scanning can take a significant amount of
time, during which the SSD is unavailable to the host.

For the reasons stated above, and for other reasons which
will become apparent to those skilled in the art upon reading
and understanding the present specification, there is a need in
the art for alternative bulk storage options.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a functional block diagram of an electronic sys-
tem having at least one memory module according to an
embodiment of the disclosure.

FIG. 2 is a representation of a data block and its associated
log blocks in accordance with an embodiment of the disclo-
sure.

FIG. 3 is a representation of a data structure of a page in
accordance with an embodiment of the disclosure.

FIGS. 4A-4B are block representations of a logical data
block combining multiple physical data blocks in accordance
with an embodiment of the disclosure.

FIG. 5 is a flowchart of a method of operating a memory
module in accordance with an embodiment of the disclosure.

FIG. 6 is a flowchart of a method of operating a memory
module in accordance with an embodiment of the disclosure.

DETAILED DESCRIPTION

Inthe following detailed description of the present embodi-
ments, reference is made to the accompanying drawings that
form a part hereof, and in which is shown by way of illustra-
tion specific embodiments in which the embodiments may be
practiced. These embodiments are described in sufficient
detail to enable those skilled in the art to practice the inven-
tion, and it is to be understood that other embodiments may be
utilized and that process, electrical or mechanical changes
may be made without departing from the scope of the present
disclosure. The following detailed description is, therefore,
not to be taken in a limiting sense.

FIG. 1 is a block diagram of a solid state drive (SSD) 100
in communication with (e.g., coupled to) a processor 130 as

US 9,262,335 B2

3

part of an electronic system 120, according to one embodi-
ment of the disclosure. The electronic system 120 may be
considered a host of the SSD 100 in that it controls the
operation of the SSD 100 through its processor 130. Some
examples of electronic systems include personal computers,
laptop computers, personal digital assistants (PDAs), digital
cameras, digital media players, digital recorders, electronic
games and the like. The processor 130 may be a disk drive
controller or other external processor. Typically there exists a
communication bus 132 employing a standard protocol that is
used to connect the processor 130 and the SSD 100. The
communication bus 132 typically consists of multiple signals
including address, data, power and various I/O signals. The
type of communication bus 132 will depend on the type of
drive interface being utilized in the system 120. Examples of
some conventional disk drive interface bus protocols are IDE,
ATA, SATA, PATA, Fibre Channel and SCSI. Other drive
interfaces exist and are known in the art. It should be noted
that FIG. 1 has been simplified to focus on the embodiments
of the disclosure. Additional or different components, con-
nections and 1/O signals could be implemented as are known
in the art without departing from the scope of the disclosure.
For example, the SSD 100 could include power conditioning/
distribution circuitry, volatile memory and its controller, etc.
However, such additional components are not necessary to an
understanding of this disclosure.

The SSD 100 according to one embodiment of the disclo-
sure, as illustrated in FIG. 1, includes an interface 102 to
allow a processor 130, e.g., a drive controller, to interact with
the SSD 100 over communication bus 132. The interface 102
may be one of many standardized connectors commonly
known to those skilled in the art. Some examples of these
interface 102 connectors are IDE, ATA, SATA and PCMCIA
connectors. As various embodiments of the disclosure can be
configured to emulate a variety of conventional type HDDs,
other disk drive connectors may also be utilized at the inter-
face 102.

The SSD 100 of FIG. 1 also includes a master controller
104 and a number of memory modules 106,-106,, Some of
the functions performed by the master controller 104 are to
manage operations within the SSD 100 and communicate
with devices external to the SSD 100 such as the processor
130 over the communication bus 132. Memory modules
106,-106,, act as the bulk storage media for the SSD 100.

The master controller 104 manages the various operations
of'the SSD 100. As discussed, an SSD 100 may be used as a
drop in replacement for a standard HDD and there exist many
standardized HDDs which have standard interfaces and com-
munication protocols. Thus, one of the many functions of the
master controller 104 is to emulate the operation of one of
these standardized HDD protocols. Another function of the
master controller 104 is to manage the operation of the
memory modules 106 installed in the SSD 100. The master
controller 104 can be configured to communicate with the
memory modules 106 using a variety of standard communi-
cation protocols. For example, in one embodiment of the
disclosure, the master controller 104 interacts with the
memory modules 106 using a SATA protocol. Other embodi-
ments may utilize other communication protocols to commu-
nicate with the memory modules 106. The master controller
104 may also perform additional functions relating to the
memory modules such as error correction code (ECC) check-
ing. Implementation of the master controller 104 may be
accomplished by using hardware or a hardware/software
combination. For example, the master controller 104 may be
implemented in whole or in part by a state machine.

40

45

55

4

Memory modules 106 are coupled to the master controller
104 using internal communication bus 112. Communication
between the master controller 104 and the memory modules
106 may be implemented by utilizing a common bus 112 as
shown, and/or discrete connections between the master con-
troller 104 and each memory module 106.

Control circuitry 110 manages the operation of the non-
volatile memory devices 116 on its corresponding memory
module 106,-106,. Memory devices 116 may be flash
memory devices. The control circuitry 110 may also act to
translate the communication protocol utilized by the master
controller 104 to communicate with the memory module
106,-106,. For example, in one embodiment of the disclo-
sure, the master controller 104 may be utilizing an SATA
protocol to interact with the memory modules 106,-106,,. In
such an embodiment, the control circuitry 110 is configured
to emulate a SATA interface. The control circuitry 110 can
also manage other memory functions such as security fea-
tures to regulate access to data stored in the memory module
and wear leveling. The control circuitry 110 is further con-
figured to perform one or more methods of the present dis-
closure.

As noted above, due to the nature of flash memory devices,
the physical location within a flash memory device for a given
logical address will generally change over time. This occurs
because storage locations in flash memory devices generally
need to be erased before reprogramming. As such, if the data
corresponding to a given logical address is to be changed,
rather than erasing the existing physical location within the
memory device and reprogramming it with the new data, the
memory device simply writes the new data to a new physical
location and marks-the old physical location as obsolete.

Flash memory devices are typically organized as blocks of
memory cells, which are further broken down into pages. As
data is written to a block, it is written to the first free page of
that block. Thus, a block can have a mix of valid and obsolete
pages. When a block is full, the valid data may be copied to a
free block for consolidation, often referred to as folding.
However, for efficiency, a data block may have one or more
log blocks associated with it. If log blocks are utilized, at the
point when a data block is full, subsequent writes for that data
block are written to the next free page of its one or more log
blocks. In this manner, the folding operation is more efficient
as it can be performed less frequently. Once valid pages are
folded to a new block, the old data block and its log blocks, if
any, are marked for erasure.

An example of this process is shown in FIG. 2. FIG. 2 is a
representation of a physical data block 202 and its associated
physical log blocks 204a and 2045. The datablock 202 and its
associated log blocks 204a and 2045 would be associated
with a single logical block address. In this example, each of
the blocks 202/204 includes 8 physical pages 201,-201,. Data
addressed to data block 202 started at physical page 201, and
proceeded to write 8 logical pages to the data block 202
through physical page 201,. When data block 202 was full,
i.e., its last available physical page 201, was written to, sub-
sequent page writes went to log block 204a, proceeding in
like fashion, and then to logblock 2045. As logical page O was
first written to log block 204qa in its physical page 201,,
physical page 201, of data block 202 was marked as old, and
so on. As shown in FIG. 2, data block 202 has 8 valid pages
201 amonyg itself and its associated log blocks 204.

The Flash Translation Layer (FTL) tracks the correspon-
dence between the logical addresses and their corresponding
physical address. If this mapping information is not updated
due to a power loss or abrupt shutdown, it needs to be re-built
by scanning the blocks of the memory device. Because write

US 9,262,335 B2

5

operations proceed sequentially through the pages of the
blocks, this scanning process proceeds through the block in a
reverse direction. For example, if there are 64 pages per block,
and writes proceed in the direction of page 0 through page 63,
the scan proceeds in the direction of page 63 through page 0.
As a valid physical page is discovered, its corresponding
logical address is updated in the mapping information. This
process can consume a relatively substantial amount of time
and power. Thus, with reference back to FIG. 2, the scanning
would proceed beginning at physical page 201, of log block
2045 and proceed toward data block 202. As each valid physi-
cal page 201 is discovered, its corresponding logical page is
updated in the mapping information. However, the scanning
process must, in the example of FIG. 2, proceed until it
reaches physical page 201, of data block 202 before it has a
complete correspondence of the mapping information for the
logical block address corresponding to data block 202.

The various embodiments utilize embedded mapping
information contained within the physical block correspond-
ing to a logical block address. In particular, when a page is
written to a block, that page includes a snapshot of the current
mapping information for that block. In this manner, the last
valid page of a block will contain a physical/logical mapping
of that block. Thus, instead of scanning every valid page of
the memory device to rebuild the mapping information, vari-
ous embodiments may scan only for the last valid page asso-
ciated with each logical block. Once a last valid page is
discovered for a block, the latest mapping information for that
block may be read from that page. Note that a last valid page
of a block, i.e., the page most recently written to for that
block, may occur in an associated log block if log blocks are
utilized. Referring back to the example of FIG. 2, if the
mapping information is embedded with user data stored to the
last valid page for data block 202, i.e., physical page 201, of
log block 2045 in this example, only that page need be
scanned in order to develop the complete correspondence of
mapping information for data block 202.

A page of data, while stored in physical locations, i.e.,
memory cells, may not be stored in a contiguous grouping of
memory cells. For example, memory cells of One page of a
block may be interleaved with memory cells of another page
of that block, or even another block. In addition, or alterna-
tively, a memory cell may store data from two pages of that
block. For example, where multi-level cells are used to store
more than one digit of data per memory cell, one digit might
belong to one page and another digit might belong to another
page. Thus, when reference is made to a physical page or a
physical block, it refers to a grouping of memory cells logi-
cally associated as a page or a block, respectively. Further-
more, in the description of the data structure of a page or a
block, a representation of a portion of the page or the block
need not contain a contiguous physical grouping of memory
cells or even a contiguous logical grouping of memory cells.
For example, where a page of data may logically contain a
first portion of user data, a second portion of metadata and a
third portion of error correction code (ECC) data, the meta-
data and ECC data may be distributed among the user data
both physically and logically, provided the controller is con-
figured to be able to identify which memory cells contain the
user data, which memory cells contain the metadata and
which memory cells contain the ECC data.

FIG. 3 is a representation of one embodiment of a data
structure of a page 201 in accordance with an embodiment of
the disclosure. The page 201 has one or more user data por-
tions 312, one or more metadata portions 314 and, optionally,
one or more ECC portions 316. The ECC portions 316, in this
example, include ECC data for both the user data portions 312

10

15

20

25

30

35

40

45

50

55

60

65

6

and the metadata portions 314. Although often stored together
with user data, ECC data may be separately stored in a dif-
ferent page. In the example of FIG. 3, the ECC portion 3164
may contain ECC data for the user data portion 3124 and the
metadata portion 314a while the ECC portion 3165 may
contain ECC data for the user data portion 3126 and the
metadata portion 3145. As one example, each user data por-
tion 312 contains 2,048 Bytes of user data, each metadata
portion 314 contains 32 Bytes of metadata (defined subse-
quently), and each ECC portion 316 contains 16 Bytes of
ECC data. A page 201 may further include additional data
portions (not shown) for other purposes a designer might
choose. While generating ECC data would be more efficient
using combined user data and metadata in the foregoing
example, ECC data could be generated for each data portion
separately.

The metadata portions 314 contain data representative of
the mapping information for the logical data block to which
the page 201 is associated. Thus, the metadata portions 314
contain the data sufficient to re-build the mapping correspon-
dence between a logical address and a physical location con-
taining the data corresponding to the logical address. Consid-
ering the example of a data block containing 64 physical
pages and utilizing up to two log blocks, and an addressing
scheme associating 64 logical page addresses to the data
block, each metadata portion 314 might be sub-divided into
32 metadata sub-portions 324, each representative of one
logical page address. By indexing the metadata sub-portions
324 by their logical page offset, e.g., data corresponding to a
first logical page of the block residing in a first metadata
sub-portion 324, data corresponding to a second logical page
of the block residing in a second metadata sub-portion 324,
and data corresponding to a third logical page of the block
residing in a third metadata sub-portion 324, etc., the meta-
data corresponding to physical mapping information for any
logical page may be easily determined.

For one embodiment, the metadata corresponding to map-
ping information of a logical page contains data indicative of
the physical page address where the data is stored for that
logical page. For a further embodiment, the metadata may
contain additional data. For example, where log blocks are
used, the additional data may define whether the physical
page is located in a data block or a log block associated with
the data block, and may further define a sequence number of
the log block containing that physical page where more than
one log block is used. Thus, for the foregoing example, each
metadata sub-portion 324 could contain 5 digits of data defin-
ing an address for one ofthe 64 pages of ablock, 1 digit ofdata
defining whether the block is the data block or a log block,
e.g., logical O foradatablockand logical 1 foralogblock, and
1 digit of data defining which log block contains the
addressed physical page, e.g., logical 0 for a first log block
and logical 1 for a second log block. This further breakdown
is shown with reference to metadata sub-portion 324,.

Various embodiments can be adapted for use with memory
devices having insufficient physical space in any one physical
page to store complete mapping information for the entire
logical data block. This is taken care of by combining mul-
tiple physical data blocks, and any associated log blocks, to
represent one logical data block. FIGS. 4A-4B show block
representations of such embodiments.

In the example of FIG. 4A, a grouping 450 of multiple
physical blocks 202/204, identified as separate channels 454
of a logical data block 456, is used to create a virtual data
block 452. Tt is noted that each channel 454 may be associated
with a data block 202 and, optionally, one or more log blocks
204 associated with that data block 202, as described with

US 9,262,335 B2

7

reference to FIG. 2. Each physical block 202/204 of the
grouping 450 has multiple physical pages 201, also as
described with reference to FIG. 2. However, instead of stor-
ing the complete mapping information for the logical data
block 456 in the last valid page 201 of any single channel 454,
the last valid page 201 of each channel 454 would store
mapping information for only a portion of the logical data
block 456. For example, if there are 64 pages per channel 454,
and eight channels 454 are utilized, the last valid page 201 of
any given channel 454 might store eight logical page entries
of'the mapping information of the logical block 454. Thus, the
last valid page 201 of the channel 452, could store mapping
information for the first eight logical page addresses of the
logical data block 456, the last valid page 201 of the channel
452, could store mapping information for the next eight logi-
cal page addresses of the logical data block 456, the last valid
page 201 of the channel 452, could store mapping informa-
tion for the next eight logical page addresses of the logical
data block 456, and so on.

The logical data block 456 is treated as a single logical
block such that a write operation would write data to the first
free physical page of each of the channels 454 of the logical
block 456. As one example, if each of the physical pages 201
of the grouping 450 included 4 KB of data per page, the
physical pages 201 of the logical block 456 would have N
times 4 KB of data per page, where N is the number of
channels 454 used to create the virtual data block 452. In the
example of FIG. 4A, N=8. Accordingly, each write operation
would write 32 KB of data in this example. In this manner, by
reading the last valid page of each of the channels 454, the
complete mapping information for logical data block 456
may be retrieved. If the logical data block 456 is not treated as
a single logical block, and write operations are permitted to
individual channels 454, the mapping information would be
outdated if the channel 454 receiving the new data did not
contain the mapping information for the logical page address
being written. Also, when treated as a single logical block,
each logical page address will occur at the same physical page
offset of their respective data block 202. If not treated as a
single block, a subsequent write operation may identify a next
free page at a different offset for different data blocks 202.
This would require the storage of multiple physical addresses
for a single logical page address. Furthermore, the write
operations to each channel 454 may be concurrent or sequen-
tial. However, the write operation to the logical data block 456
should not be recognized by the control circuitry as complete
until all channels 454 have completed their respective write
operation.

In the example of FIG. 4B, a grouping 450 of multiple
physical blocks 202/204, identified as separate channels 454
of a logical data block 456, is used to create a virtual data
block 452. The description parallels that of the example of
FIG. 4A except that physical blocks 202/204 of the example
of FIG. 4B each contain 128 physical pages 201. In spreading
the mapping information across the channels 454, the last
valid page 201 of the channel 452, could store mapping
information for the first 16 logical page addresses of the
logical data block 456, the last valid page 201 of the channel
452, could store mapping information for the next 16 logical
page addresses of the logical data block 456, the last valid
page 201 of the channel 452, could store mapping informa-
tion for the next 16 logical page addresses of the logical data
block 456, and so on. In this manner, the complete mapping
information for all 128 logical page addresses of the logical
data block 456 can be found by reading the last valid page 201
of the virtual block 452.

10

15

20

25

30

35

40

45

50

55

60

65

8

Although eight channels 454 were used in each of the
examples of FIGS. 4A and 4B, fewer or more channels 452
can be used. By increasing the fraction of logical page
addresses having their mapping information stored on any
one channel 454, fewer channels 454 may be used. By
increasing the number of channels 454 used, each channel
454 can store mapping information for a smaller fraction of
logical page addresses. However, each such variation should
treat the resulting logical data block 456 as a unit when
writing to any portion of the physical pages 201 associated
with the logical data block 456.

In the embodiments described with reference to FIGS.
4A-4B, the last valid physical page held one copy of the
mapping information for the corresponding logical data block
456. However, in cases where each physical page 201 of a
channel 454 has sufficient capacity available to store more
metadata sub-portions than are required to store mapping
information for all logical page addresses of the logical data
block 456, it may be possible to store multiple copies of the
mapping information across the channels 454. For example, if
the logical data block 456 has 128 logical page addresses, and
8 channels 454 are utilized, the last valid page 201 of each
channel 454 would be required to store mapping information
for 16 logical page addresses in order to collectively store
mapping information for all 128 logical page addresses. But,
if there is sufficient space in each physical page 201 to store
mapping information for 32 logical addresses, two copies of
the mapping information may be stored. For example, the last
valid pages 201 of the channels 452,-452, could collectively
store a first copy of mapping information for all 128 logical
page addresses of the logical data block 456, and the last valid
pages 201 of the channels 452,-452, could collectively store
a second copy of the mapping information for all 128 logical
page addresses of the logical data block 456. In this manner,
even if there are data corruption issues in reading the last valid
pages 201, it may be possible to re-create the mapping infor-
mation for the logical data block 456 using pages 201 that are
not subject to data corruption.

In operation, when user data is received by a memory
module 106 for writing to one of its memory devices 116, the
control circuitry 110 would combine the user data with the
metadata representative of the mapping information of the
logical data block corresponding to the page 201 to which the
user data is to be written. This metadata would be written to
the metadata portion 314 concurrently with writing of the
user data to the user data portion 312 and/or with writing of
the ECC data to the ECC portion 316.

Each memory module 106 would have its own set of map-
ping information independent of other memory modules 106.
The control circuitry 110 stores the mapping information for
access of its corresponding memory devices 116. It will be
appreciated that a logical address within a memory device
116 may be only a portion of a logical address received from
a host. For example, where the SSD 100 contains four
memory modules 106, each containing sixteen memory
devices 116, and each memory device 116 having 1,920
addressable logical data blocks with 64 pages per block, a
portion of the logical address would define which memory
module 106, and which memory device 116 of that memory
module 106, contained the addressed logical data block.
Thus, the mapping information combined with user data as
described herein defines mapping information for at least a
portion of the logical data block associated with the physical
page containing the metadata, but may not define mapping
information as to which memory device or which memory
module is associated with that logical data block.

US 9,262,335 B2

9

FIG. 5 is a flowchart of a method of operating a memory
module in accordance with an embodiment of the disclosure.
At 530, user data is received from a host for writing to a
logical data block of at least one memory device. For
example, a host may issue a write command to the memory
module, providing data to be written to the memory module
and a logical address corresponding to where the data is to be
written. The logical address specifies a logical data block and
a logical page address for storing the user data. At 532, the
control circuitry of the memory module retrieves mapping
information corresponding to the addressed logical data
block. The control circuitry may retrieve the mapping infor-
mation prior to or after selecting the next free physical page
associated with the logical data block. However, if the map-
ping information is retrieved prior to being revised to show
the intended physical page corresponding to the addressed
logical page, it should be updated prior to generating the
metadata as described below.

At 534, metadata is generated corresponding to the map-
ping information of the addressed logical data block. The
metadata is indicative of a mapping correspondence between
logical page addresses, for at least a portion of the logical data
block, and the physical pages addresses associated with that
logical data block. It will be understood that the metadata
includes mapping information for at least one logical page
address other than the logical page address of the current
write command. That is, the metadata corresponds to map-
ping information for two or more logical page addresses of
the addressed logical data block. As noted above, the meta-
data might include a physical page address within a physical
block associated with the logical data block, an indication
whether the physical block containing the physical page is a
data block or a log block, and an indication of a block
sequence number if the physical page is contained in one of a
plurality of log blocks associated with the logical data block.

At 536, the user data and the metadata are combined. As
one example, the metadata is appended to the user data. For
example, if the user data is 2,048 Bytes, and the metadatais 32
Bytes, the combined data would be a string of 16,640 data
values, with the first 16,384 data values being user data and
the last 256 data values being metadata. Optionally, at 538,
ECC data is generated for the combined user data and meta-
data. While, for practicality, ECC should be used for correc-
tion of data read errors, it need not be stored with the data that
it is used to correct. However, for one embodiment, the ECC
data is combined with the combined user data and metadata.
As one example, the ECC data is appended to the combined
user data and metadata.

At 540, the combined data is then written to the free physi-
cal page selected by the control circuitry, thus storing the
current mapping information for the corresponding logical
data block within the physical page. Higher level mapping
information retained by the control circuitry of the memory
module should then be updated as is common in the art. It is
noted that various embodiments described herein do not rely
on a specific application of a Flash Translation Layer or other
mapping technique. Similarly, the various embodiments do
not interfere with higher level mapping information. Thus,
wear leveling, garbage collection and other maintenance
activities within the memory module can operate without
adversely affecting, or being adversely affected by, such
embodiments. What the embodiments provide is an ability to
re-build mapping information more efficiently than a process
of scanning through every valid page of a memory device.
Because various embodiments facilitate re-building the map-
ping information for a memory device by scanning only one
valid page of each logical data block of the memory device,

20

40

45

65

10

rather than all valid pages of all logical data blocks, the
scanning process is greatly simplified.

FIG. 6 is a flowchart of a method of operating a memory
module in accordance with an embodiment of the disclosure.
At 660, mapping information of a memory device is detected
to be corrupted. Such corruption may occur by powering
down the memory device before a write operation is com-
plete. As one example, by setting a non-volatile register to
indicate that a write operation is underway, and only re-
setting it upon completion of that write operation, any inter-
ruption of that write operation can be detected upon powering
up the memory module by simply checking the value of the
register.

At 662, upon detecting corruption of mapping information
of'a memory device, the control circuitry would begin a scan
process to read the last valid physical page associated with
each logical data block of that memory device. There is no
need to read additional pages of memory as, in accordance
with the various embodiments, the mapping information for
the memory device may be re-built using only information
stored in the last valid physical page of each logical data block
addressed by the memory device.

At 664, the mapping information is obtained from the data
read from only the last valid physical page of the logical data
blocks. Obtaining the mapping information may include
either reading only those memory cells necessary to obtain
the mapping information, or it may include reading all
memory cells of the physical page, and extracting the map-
ping information from the data obtained. Obtaining the map-
ping information may further include applying error correc-
tion using the ECC data.

At 666, the mapping information for the memory device is
re-built using the mapping information obtained from the last
valid physical pages of the logical data blocks. For memory
modules containing more than one memory device, the pro-
cess from 662-666 can be repeated for each memory device of
the memory module, or it may only be performed for those
memory devices indicating a corruption of their mapping
information. The re-built mapping information may then be
stored by the control circuitry of the memory module.

Although specific embodiments have been illustrated and
described herein, it will be appreciated by those of ordinary
skill in the art that any arrangement that is calculated to
achieve the same purpose may be substituted for the specific
embodiments shown. Many adaptations of the disclosure will
be apparent to those of ordinary skill in the art. Accordingly,
this application is intended to cover any adaptations or varia-
tions of the disclosure.

What is claimed is:

1. A memory module, comprising:

one or more memory devices; and

a control circuitry coupled to the one or more memory

devices;

wherein the control circuitry is configured to detect a cor-

ruption of mapping information for one or more of the
memory devices and, if corruption of mapping informa-
tion is detected, to read a last valid physical page asso-
ciated with each logical data block addressable to the
one or more memory devices, to obtain mapping infor-
mation for each of the logical data blocks from the data
read from the last valid physical pages, and to combine
the obtained mapping information for each ofthe logical
data blocks to re-build the mapping information for the
memory module.

2. The memory module of claim 1, wherein each physical
page associated with a logical data block comprises one
physical page from two or more physical blocks of a memory

US 9,262,335 B2

11

device, and wherein mapping information obtained from data
read from any one of the physical pages of a single physical
block contains only a portion of the mapping information for
the corresponding logical data block.

3. The memory module of claim 2, wherein a first copy of
a first portion of the mapping information for the correspond-
ing logical data block is obtained from the last valid physical
page of one of the physical blocks and a second copy of the
first portion of the mapping information for the correspond-
ing logical data block is obtained from the last valid physical
page of a different one of the physical blocks.

4. The memory module of claim 1, wherein the mapping
information for each logical data block comprises mapping
information for each logical page of that logical data block,
and wherein mapping information for each logical page of
that logical data block comprises data indicative of an address
of a physical page within a physical block containing data
corresponding to that logical page.

5. The memory module of claim 4, wherein the mapping
information for each logical page further comprises data
indicative of which physical block contains the correspond-
ing physical page.

6. The memory module of claim 1, wherein a physical page
associated with alogical data block comprises a physical page
from each of two or more physical blocks of a memory
device.

7. A memory module, comprising:

one or more memory devices; and

a control circuitry coupled to the one or more memory

devices;

wherein the control circuitry is configured to detect a cor-

ruption of mapping information for one or more of the
memory devices and, if corruption of mapping informa-
tion is detected in any memory device of the one or more
memory devices, to read a last valid physical page asso-
ciated with each logical data block addressable to those
memory devices for which corruption of mapping infor-
mation is detected, to obtain mapping information for
each of the logical data blocks from the data read from
the last valid physical pages, and to combine the
obtained mapping information for each of the logical
data blocks to re-build the mapping information for the
memory module.

8. The memory module of claim 7, wherein the control
circuitry is further configured, if corruption of mapping infor-
mation is detected in any memory device of the one or more
memory devices, to read the last valid physical page associ-
ated with each logical data block addressable to only those
memory devices for which corruption of mapping informa-
tion is detected.

9. The memory module of claim 7, wherein the control
circuitry is further configured to obtain mapping information
for a particular logical data block from reading only the last
valid physical page of the particular logical data block.

10. The memory module of claim 7, wherein the control
circuitry is configured to detect a corruption of mapping
information by checking a value of a register.

25

30

40

45

50

12

11. The memory module of claim 10, wherein the control
circuitry is configured to set the register to indicate a write
operation is underway, and to only re-set the register upon
completion of the write operation.
12. The memory module of claim 7, wherein the control
circuitry is further configured, if corruption of mapping infor-
mation is detected in any memory device of the one or more
memory devices, to obtain mapping information for each of
the logical data blocks from the data read from the last valid
physical pages to which error correction has been applied.
13. A method of operating a memory module to re-build
mapping information, comprising:
detecting that mapping information for at least one
memory device of the memory module is corrupted;

reading a last valid physical page associated with each
logical data block of the at least one memory device;

obtaining mapping information from the data read from
only the last valid physical page associated with each
logical data block of'the at least one memory device; and

re-building mapping information for the memory device
from the mapping information obtained from the last
valid pages.

14. The method of claim 13, wherein the memory module
comprises two or more memory devices and wherein reading
a last valid physical page associated with each logical data
block of the at least one memory device comprises reading a
last valid physical page associated with each logical data
block of each of the two or more memory devices.

15. The method of claim 14, further comprising re-building
mapping information for the memory module from the map-
ping information of each of the two or more memory devices.

16. The method of claim 13, wherein the memory module
comprises two or more memory devices and wherein reading
a last valid physical page associated with each logical data
block of the at least one memory device comprises reading a
last valid physical page associated with each logical data
block of only the at least one memory device for which
corruption of mapping information is detected.

17. The method of claim 13, wherein reading a last valid
physical page associated with each logical data block com-
prises reading a physical page that spans across two or more
physical blocks of a memory device.

18. The method of claim 17, further comprising obtaining
mapping information from the data read from fewer than all
of the two or more physical blocks.

19. The method of claim 13, further comprising:

applying error correction to the data read from only the last

valid physical page associated with each logical data
block of the at least one memory device prior to obtain-
ing the mapping information.

20. The method of claim 13, wherein detecting that map-
ping information for at least one memory device of the
memory module is corrupted comprises detecting that a write
operation has been interrupted.

#* #* #* #* #*

